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∗To whom correspondence should be addressed; E-mail: scheeres@umich.edu.

1



Dynamics of the KW4 System

Simulation equations and model computation

The specific equations of motion solved for our simulations are stated in a

compact form as (1):
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Here r is the relative position vector between the two centers of mass ex-

pressed in an inertial frame, the system mass parameter m equals the prod-

uct of body masses divided by their sum, HI is the inertial frame angular

momentum vector of the Ith body, II is the inertia tensor of body I in its

body-fixed frame, ΩI is its angular velocity vector, T I
ij is the attitude ma-

trix of body I mapping its body-fixed frame to the inertial frame, εijk is the

skew-symmetric 3-tensor (with ε123 = 1) that defines the cross product, G

is the universal constant of gravitation, BI signifies the mass distribution of

the body with differential mass element dmI , ρI is the location of that mass

element in the Ith body frame, and U is the mutual gravitational potential

between the bodies. Dots over a variable denote time derivatives, subscripts

on all variables except U denote vector, matrix or tensor elements, and we

assume the Einstein summation convention. A subscript on U denotes partial

differentiation.
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To carry out one mutual potential evaluation for the mutual potential

formulation(2) for two bodies with N and M facets requires NM opera-

tions. Using a conventional, high-order Runge-Kutta integration method for

propagation of the system can add up to 13 additional potential, force, and

moment evaluations per time step, albeit with an increase in the time step.

On average, the Lee et al. (3) integrator provides an order of magnitude

speed up in the simulation, as compared to a Runge-Kutta integration. The

use of a parallel computer yields a two order of magnitude speed up. These

techniques made it feasible to propagate the full KW4 simulation for time

spans of months with a few weeks of computer time.

The dynamics of the KW4 system have been visualized with a computer

animation that covers a two week time period. In this animation the relative

orbit is excited to the point where the Beta libration angle reaches 8 degrees

at maximum and the mutual obliquity of the system set at 10 degrees.

Angular Momentum Dynamics

The dynamics of the orbit and Alpha angular momentum vectors have a reg-

ularity that can be described with classical mechanics. Let the total angular

momentum vector define the inertial frame’s z-axis, and let the obliquity δ

and the inclination i be the angles between the Alpha and orbit angular mo-

mentum vectors and the z-axis, respectively. Then due to Beta’s on-average

synchronous motion and Alpha’s modest equatorial ellipticity, the respective

magnitudes H and G of the Alpha and the orbit angular momentum vectors

are constant on average, and constancy of the total angular momentum K
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dictates the following relations:

K = H cos δ + G cos i (6)

H sin δ = G sin i (7)

The inclination and obliquity have only small fluctuations from their ini-

tial values, so the angular momentum vectors trace out cones in inertial space.

Figure S1 shows the inclination and obliquity angles for various initial offsets

between these vectors, integrated for fully interacting models with 100 facets

each (to speed computation) over a one-year time span. The total angular

momentum for a given initial condition pierces the center of each circle. The

projected inclination and obliquity variations are displaced vertically to allow

for clear distinctions between them.

Tidal Evolution

We computed timescales appropriate for the 1999 KW4 system under ide-

alized assumptions mentioned in the text to find Fig. S4. This estimate

should be viewed with considerable caution, because it is not clear that the

tidal response of a gravitationally bound aggregate can be described realis-

tically by two idealized numbers, and there is much uncertainty about the

likely values of those numbers in the low-pressure, low-gravity regimes that

have not been sampled in the laboratory. Furthermore, there may have been

considerable evolution in the packing arrangement of KW4’s constituent par-

ticles and hence in its response to tides at various epochs since its formation.

Additional work is needed to understand the tidal response of rubble piles.
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Implications for future missions

The expected presence of dynamical variation implies that a period of con-

certed ground-based or in-situ observations of KW4 could constrain the com-

ponents’ internal mass distributions by monitoring the system’s time-varying

behavior. Specifically, the low degree and order gravity field coefficients of

the bodies can be inferred by observing the precession of the mutual orbit

and the moments of inertia can be inferred by observing the system’s time-

varying rotational motion (4). Such a ground-based observation opportunity

for KW4 will occur in 2018-2019.

If visited by a spacecraft, in addition to high resolution in situ obser-

vations there are several more aggressive observational techniques that are

uniquely suited to a binary system with similar characteristics to KW4. An

impact or explosion precipitated on Alpha’s equator would provide profound

insight into the composition of the regolith band at the equator. It would lib-

erate large quantities of material, which would subsequently be size-sorted

by solar radiation pressure and distributed throughout the binary system.

Delivery of an inertial measurement unit on Beta would allow for precise

determination of its time varying spin rate and motion, and could detect

internal shifts in its mass distribution. Such measurements would enable

precise determination of the system’s mass distribution and would provide

insight into the internal structure and mechanical properties of the bodies.
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Figure S1: (a) Projections of the orbit, Alpha and Beta angular momentum

vectors onto an inertial plane, showing relaxed and excited angular

momentum cases with the offset angle ∆ equal to 0, 2, and 5◦. Beta’s

angular momentum is always close to the orbit’s and Alpha’s angular

momentum is always diametrically opposed to it. For each offset angle, the

total angular momentum vector is at the center of the concentric circles.

The radius of the orbit circle equals the inclination, i, and the radius of the

Alpha circle equals the obliquity, δ. (b) The diagram shows the path

followed by the evolving angular momentum vectors. The large vertical

arrow represents the total angular momentum, the smallest arrow

represents the orbit angular momentum, which has an angle i with the total

angular momentum, and the other arrow represents Alpha’s angular

momentum, which has an angle δ with the total angular momentum. Beta’s

angular momentum is too small to show here.
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Figure S2: Effective gravitational slopes on Alpha with arrows pointing in

the direction of steepest descent. The natural flow direction from both

Northern and Southern hemispheres is towards the equator. Slopes range

from zero (blue) to 70◦ (red).
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Figure S3: Surface acceleration on Alpha. Note the near vanishing of

acceleration along the equator.
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Figure S4: Logarithm of the timescale for tidal evolution in years as a

function of tidal dissipation factor Q and rigidity µ. The timescales

represent the time for the system to reach its current orbital separation

under the influence of tides raised on Alpha by Beta.
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